Input-based adaptive randomized test case prioritization: A local beam search approach
نویسندگان
چکیده
Test case prioritization assigns the execution priorities of the test cases in a given test suite. Many existing test case prioritization techniques assume the fullfledged availability of code coverage data, fault history, or test specification, which are seldom well-maintained in realworld software development projects. This paper proposes a novel family of input-based local-beam-search adaptiverandomized techniques. They make adaptive tree-based randomized explorations with a randomized candidate test set strategy to even out the search space explorations among the branches of the exploration trees constructed by the test inputs in the test suite. We report a validation experiment on a suite of four medium-size benchmarks. The results show that our techniques achieve either higher APFD values than or the same mean APFD values as the existing code-coverage-based greedy or search-based prioritization techniques, including Genetic, Greedy and ART, in both our controlled experiment and case study. Our techniques are also significantly more efficient than the Genetic and Greedy, but are less efficient than ART. Keywords-regression testing, adaptive test case prioritization, randomized algorithm, empricial comparsion
منابع مشابه
Fitting the Three-parameter Weibull Distribution by using Greedy Randomized Adaptive Search Procedure
The Weibull distribution is widely employed in several areas of engineering because it is an extremely flexible distribution with different shapes. Moreover, it can include characteristics of several other distributions. However, successful usage of Weibull distribution depends on estimation accuracy for three parameters of scale, shape and location. This issue shifts the attentions to the requ...
متن کاملIterative Approach for Automatic Beam Angle Selection in Intensity Modulated Radiation Therapy Planning
Introduction: Beam-angle optimization (BAO) is a computationally intensive problem for a number of reasons. First, the search space of the solutions is huge, requiring enumeration of all possible beam orientation combinations. For example, when choosing 4 angles out of 36 candidate beam angles, C36 = 58905 possible combinations exist. Second, any change in a beam 4 config...
متن کاملAn Application of Adaptive Random Sequence in Test Case Prioritization
Test case prioritization aims to schedule test cases in a certain order such that the effectiveness of regression testing can be improved. Prioritization using random sequence is a basic and simple technique, and normally acts as a benchmark to evaluate other prioritization techniques. Adaptive Random Sequence (ARS) makes use of extra information to improve the diversity of random sequence. Som...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملAn Optimized technique for Test Case Generation and Prioritization Using 'Tabu' Search and 'Data Clustering'
In practice, an available testing budget limits the number of test cases that can be executed over particular software. This paper presents a ―Tabu‖ search algorithm for the automatic generation of software test cases and their prioritization through clustering technique of data mining. The developed test case generator has a cost function for intensifying the search and another for diversifyin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Systems and Software
دوره 105 شماره
صفحات -
تاریخ انتشار 2015